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A detailed description is presented of the mathematical and computational aspects 
of the general inverse solution procedure developed for turbulent swirling boundary 
layer combustion flow. The situation is that a nonrecirculating swirling turbulent flame 
in which experimental time-mean measurements of the axial and swirl velocities v)a and eta, 
temperature T and chemical species concentrations m, have been made. The problem 
is to calculate the distributions of the significant turbulent momentum, enthalpy and 
chemical species’ flux components (T,~ , ~,o, (J& and (Jj)r) and associated exchange 
coefficients, Prandtl and Schmidt numbers. A solution is provided by the inverse solu- 
tion TEXCO code; it provides a link between mean measurements and certain correla- 
tions of turbulent fluctuation components and throws light on the appropriateness or 
otherwise of any given turbulence model for the flow under consideration. 

The method is applied to both isothermal and chemically reacting flows, and calcula- 
tions show that previous assumptions of isotropy of the turbulent stress tensor and 
constancy of Prandtl-Schmidt numbers are not generally valid. The exchange coefficients 
are shown to be functions of the degree of swirl and position in the flowfield. For the 
isothermal case, it is shown that the assumption of an isotropic uniform mixing length 
parameter distribution is quite feasible for weak swirl but is progressively less valid as 
the degree of swirl increases. For the flame case, similar results are obtained ard the 
turbulent viscosity is found to be highly nonisotropic. 

Many research experiments are being conducted which concern time-mean 
measurements on quasi-steady turbulent combustion systems. Analysis of the 
results can lead to knowledge of fundamental mixing and chemical-kinetic 
processes and provide hypotheses about the process. On the other hand, solution 
of the Reynolds equations for time-mean values is restricted through lack of 
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knowledge of suitable turbulence hypotheses and experimental verification is 
required of models and predicted mean flow patterns. Comparison of time-mean 
predictions and time-mean measurements could suggest improvements to turbu- 
lence models. 

Here, consideration is given to an alternative simpler approach for the special 
case of nonrecirculating swirling flames. An analytical method has been devised 
for calculating certain components of the turbulent fluxes and associated exchange 
coefficients directly from limited experimental time-mean data, without the need 
for a complete solution to the problem [ 11, It is an intermediate step which has been 
used on both swirling isothermal [2] and combustion [3] systems. The method 
allows distributions, of T,, , 7Te , (J&. and (J& (the significant flux components) 
and associated exchange coefficients to be determined from experimental mean 
distributions of v, , vO, T and mj . It thus throws light on the appropriateness or 
otherwise of any given turbulence model for the flow under consideration. 

This paper contains four sections concerned with the basic equations and 
assumptions, the calculation procedure, the computer program and results obtained 
for both isothermal and flame jet systems with swirl. 

BASIC EQUATIONS AND ASSUMPTIONS 

Basic DlQ&erential Equations 

The basic turbulent flux equations of conservation of mass, momentum, enthalpy, 
and chemical species are assumed to hold for the time-mean variables with only 
the turbulent contributions to the fluxes (the molecular contributions being 
negligibly small in fully turbulent free flow). They are written in a cylindrical polar 
coordinate system (z, r, 0) and the motion is assumed to be quasi-steady (a/at = 0) 
and axisymmetric (a/a6 = 0) with no external force. Invoking boundary layer 
assumptions and neglecting kinetic heating, they become [4] 

r P vz [ ( au -+~+)+-t$] ==s(rTA az 

r2p 
( 
v, $$ + v, $f + -Jf$f-) = -$ (r2-f& 

(1) 

(2) 

(3) 

am. r p [ ( v, -$ + 0,s) - Rj] = - -T& WJ,l, 
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(5) 

There is an equation of type (4) for each chemical species present. 
With these assumptions is the implication that there be no recirculation; thus 

flames to which the subsequent work is applicable must have sufficiently high 
Reynolds numbers and low degrees of swirl so as not to invalidate the assumptions. 
The method is applicable, however, downstream of a recirculation zone. 

If experimental mean measurements of U, , u0 , T and mj are available and 7+.* , 
TV@, (JJ7 and (JJT are considered as unknowns, the equation system (l-6) is not 
closed. Further unknowns are v, , p, p, h and Rj which leads to (2 + n) excess 
unknowns, where n is the number of chemical species present. 

Thermodynamic Relationships 

Thermodynamic relationships provide the necessary extra equations to close 
the system; these equations are taken as 

h = c,T + C (ffjmj), 
j 

Rj = -Fi exp(-EJRT). (9) 

There are n equations of type (9). Equation (7) is the ideal equation of state and 
density variations are determined from temperature variations under the 
assumption that chemical composition has negligible effect on density and that 
pressure changes are caused solely through Eq. (6). Equation (8) demands that an 
average specific heat c, be used for the mixture and that its value be independent 
of temperature. The rates of production Rj of chemical species j are usually 
provided by expressions of the Arrhenius type (9), where Fj , the frequency 
(preexponential) factor, and Ej , the activation energy, are used. One fewer chemical 
species’ differential equations of type (4) and one fewer rate equations of type (9) 
need be considered since the relation 

is always applicable. 
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More realistic thermodynamic simulations then provided here have been used [4] 
and, if accuracy demands using them, their incorporation into the program is 
straightforward. 

Flux Laws 

It may be shown that the turbulent fluxes are related to correlations of turbulent 
fluctuations, measured in hot-wire anemometry, by the relations (neglecting the 
density fluctuation contributions) 

rrz = -pi%‘, rre = -pVrlVe’, (11) 

WJT = pv,‘h’, (Jj)? = piiyq. (12) 

By analogy with laminar flows extensions of Newton’s constitutive stress-strain 
relation, Fourier’s law of heat conduction and Fick’s law of diffusion have been 
postulated and used in the past with variable turbulent exchange coefficients p, r, , 
and rj . For the nonisotropic model used here these extensions are taken as 

(13) 

(14) 

Conversely to the prediction methods which require specification of the exchange 
coefficients as inputs, these values are the output of the method described here. 
A check on their values, spatial distributions, constancy, isotropy and deter- 
mination via a turbulence model is the main use of the subsequent program to 
which experimental mean data are the input. 

Turbulence Models 

It is the unknown flux components which lead to difficulties in satisfactorily 
solving the Reynolds equations for time-mean values. Predictions can only be made 
if they are specified in terms of mean quantities or in terms of further unknowns 
with correspondingly further equations. 

A turbulence model is some hypothesis which specifies the unknown fluxes and 
so closes the system and allows Eqs. (l)--(6) and (7)-(g) to be solved for time mean 
v, h, T, mj , p and p. This can take the form of specifying the fluxes directly or 
indirectly by way of the exchange coefficients. 

For the nonrecirculating flow system here, consideration will be given only to 
extensions of Prandtl’s mixing length hypothesis [5]. It is assumed that the primary 
viscosity component prz can be specified in terms of local mean conditions via a 
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mixing length I,., and a mixing length parameter A,., . The relation may take the 
form 

pTZ = pl& [ (+)’ 4 (r +- (u,/r))“]““, 

or 

(16) 

together with 

L = L * rmm . (17) 

The other exchange coefficients are related to pLTz via Prandtl, Schmidt and 
r&viscosity numbers defined by 

CALCULATION METHOD 

Results of experimental time-mean measurements are assumed to be in the form 
of algebraic curves, obtained by fits to the experimental data. Calculation of the 
unknown turbulent fluxes requires differentiation and integration operations to be 
performed on these fitted curves. The curves are rarely of a simple form and 
analytic handling, though straightforward, is somewhat involved. The most serious 
drawback of an analytic method, though, would be lack of generality-different 
algebraic forms of the fitted curves from different experimental investigations would 
necessitate revised mathematical work before quantitative computations could be 
performed. 

Rather than use a limited analytic method, the authors preferred to develop 
a direct numerical technique in the form of a generally applicable computer 
program, requiring only the setting of controls and specification of the fitted curves 
at appropriate places. Prime factors during the development were accuracy, 
economy, generality, and simplicity of operation, the intention being that 
experimentalists primarily interested in using the program, without concerning 
themselves greatly with the computational details, could do so with a minimum of 
effort. 

Numerical Analysis 

Finite difference simulations of the differential Eqs. (l)-(6) are required. 
Standard numerical formulas [6] are used for differentiation and integration of any 
given function y = y(x). 
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For differentiation a three-, five-, or seven-point central difference formula [6] 
is used over a series of points xW3, xv2 ,..., 3 x with constant x-interval h; it is 
obtained from 

hyo’ = (ps - f ps3 + f $5 . ..) y, ) (19) 

where 

P(&> = +t$i+1f2 + 5L1f2> = avewing operator, 

S(4i) = 4i+1/2 - d&l/2 = central difference operator, 

h = xi+1 - xi = constant x-interval between nodes. 

Truncation of formula (19) after the first, second, or third term yields the three-, 
five-, or seven-point central difference formulas 

yol = Yl -Y-1 

2h + 4h2>, 

YO’ = & i-v2 + Q, - 8y-, + y-21 + o(h3, 

YO’ = & b3 - 9y, + 45~1 - 45~~1 + 9y-2 - r-al + 4W. 

Here yi = JJ(X+) = y(x + ih). 
Integrations are performed using either the trapezoidal or Simpson& rule. The 

trapezoidal rule is obtained by expressing the integrand in terms of central 
differences via 

SZnYdx=h[(~Yo+~l+Ye+...+y,-,+~y,) Gl 

= ; bo + in> + ICY, + ~2 + ..a + an-dl + 4h3)> (23) 

where yi = y(q) = JJ(X + ih). 
Simpson’s rule is far more accurate and obtained by expressing the integral over 

two adjoining intervals in terms of central differences at the central pivotal point, 
viz., 

= ~0 + ; (Y, - 30 + y-1) + o(h*), 
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and hence 

and 
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s 
‘l 
r-1 

Y dx = ; (y-1 + 4Yo + ~1) 4 G5>, 

s 
%?I 

Y dx = ; Kyo + ~zn) + 4(Y, + ~3 + -a- + Yzn-1) 
20 

+ 2(Y‘2 + Y4 + *-* + Yzn-211 + G5>. (24) 

Any other integration or differentiation formulas can be used. However, there 
is no difficulty with regard to stability, convergency or accuracy of the above 
formulas, since they are used on smooth experimentally-fitted curves which are 
“well behaved”, in the sense that higher-order differences tend to zero as the 
order of the difference increases. In the program used by the authors [l, 41 all 
derivatives are calculated by use of the seven-point formula [Eq. (22)] and most 
integrals by Simpson’s rule [Eq. (24)J. Provided care is taken with choice of the 
mesh over which the multipoint formulas are used, final results obtained will be 
in no way inferior to those obtained analytically. 

Grid System1 

Figure 1 shows the grid system in use at any particular axial station z. It is 
defined by 6z and NPT, the number of J values. The position J = NPT is 
preselected to be just beyond the region of interest, at a point with radial coordinate 
ledge = fedge . (z + a), chosen where for instance u/f.& < 0.01. Dividing red@ 
by 6 * NPT gives the & value between successive K lines. Thus there are six 6r 
divisions between successive J lines and so the K values repeat themselves 
(NPT - 1) times. The bijective mapping 

(I,J,K)tt(z+(I-4)8z,(6J+K-7)&r) (25) 

shows that the 3-tuple (1, J, K) (1 < I < 7, 1 < J < NPT, 1 < K < 6) defines 
uniquely the 42 * NPT nodes associated with this axial station z and vice versa. 
The K range is extended to 7 via the equation (1, J, 7) = (1, J + 1, 1) for later 
convenience. 

1 A 3-tuple subscripting system (Z, J, K) is employed here which differs slightly from the simpler 
2-tuple system (Z, J) previously described [2,3]. The previous Z and J correspond directly with the 
present Z and K, and define the 7 x 7 subgrid around each J-point P; see Figs. 1 and 2. The 
subscript J now denotes to which radial point P the subgrid refers and enables the discussion of 
integration across the layer to be more complete and interesting points P to be stated explicitly 
(for example, those points P with J odd at which Simpson integration reaches a temporary halt). 
This 3-tuple system is used in [l, 41 where further use is made of the J parameter. 
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subgrid associated with points P = (4, J, 4)(1 < J subgrid associated with points P = (4, J, 4)(1 < J NPT). 

The points P with (I, J, K)-coordinates (4, J, 4) (1 < J < NPT) deserve 
special mention and are shown in Fig. 2, together with their surrounding small 
7 x 7 rectangular subgrid. For it is at these points that the left hand sides of 
Eqs. (l)-(4) are to be calculated. 

More noteworthy perhaps are those points P with J odd; that is the set 
((4, J, 4)(1 < J < NPT, J odd)}. For it is these points at which the Simpson rule 
integration of the left hand sides reaches a temporary halt after its three-point 
application over the points (4, J - 2, 4), (4, J - 1, 4) and (4, J, 4) with h = 6 . 6r. 
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Output may be effected at these points together with exchange coefficient calcu- 
lations from the fluxes. 

Calculation Procedure 

Assume that curves have been fitted to experimentally observed time-mean axial 
and swirl velocities, v, and vO , temperature T and chemical species’ concentrations 
mj . Thus for a given degree of swirl S, axial distance z and radial distance r, 
their values are easily calculated. The only unknowns in the equation system (l)-(6) 
are P, P, b , 7+-Z , ~~0, (JA and (.Z& , when the thermodynamic relations are 
assumed. These can now be calculated at all points P of the flowfield, which are 
in the set ((4, J, 4)(1 ,< J < NPT, J odd)} for some choice of axial station z and 
number of J values NPT. 

In order to allow the outward sweep calculation, as mentioned above, the axis 
subpressures at the nodes (Z, 1, I)(1 < Z < 7) are first calculated from Eq. (6) by 
inward integration using the trapezoidal rule [Eq. (23)] with h = Sr. Density 
changes due to pressure differences caused via Eq. (6) are ignored in this calcu- 
lation, since the variation in pressure is small. The use of calculating p is to 
establish ap/az for Eq. (1) which may not be small compared with the other terms 
in that equation. 

Let P be one of the points (4, J, 4) at the center of a small 7 X 7 rectangular 
subgrid. Since values of v, , v8 , T and mj [and hence h from Eq. (8) and pvJ are 
easily obtained at any of the nodes (Z, J, K) (1 < Z, K < 7), axial and radial 
derivatives of these are immediately calculable [using the seven-point formula 
Eq. (22) for example] at the nodes (4, J, K) (1 < K < 7) and (Z, J, 4) (1 < Z < 7) 
respectively. Not all of these are required and thus not all of them are calculated. 
Most are calculated only at the center node (4, J, 4), the axial derivative of pun 
being the only exception, being required at the nodes (4, J, K) (I ,< K < 7). The 
reason for this exception is so that a better calculation of v, can be made, using 
Simpson integration of Eq. (5) between the nodes (4, J, K) (1 < K ,< 7) taking 
h = 6r. 

The procedure for calculating the unknowns successively at P (the node (4, J, 4) 
(J fixed)) is as follows: 

(i) The density p is calculated at the nodes (Z, J, K) (1 < Z, K < 7) from 
Eq. (7) from a knowledge of Tat these nodes and disregard of density change due 
to pressure. Hence pv, is calculated at these nodes and (a/&)@vJ at (4, J, K) 
(1 < K < 7). 

(ii) The pressure p is calculated at the nodes (Z, J, K) (1 < Z, K < 7) from 
Eq. (6) by outward trapezoidal integration with h = &, using the axis subpressures 
as boundary conditions. This exactly reverses the initial axis subpressure calcu- 
lation. Hence aplaz is obtained at P. 
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(iii) The radial velocity v, is calculated at P from Eq. (5) using outward 
Simpson integration with h = 6r. 

(iv) The values of all terms on the left hand sides of Eqs. (l)-(4) are calculated 
at P and values appropriate to the right hand sides are deduced. 

(v) If J is odd and greater than unity, Simpson integration of these values 
over the three points (4, J - 2,4), (4, J - 1,4), and (4, J, 4) with h = 6 . &, 
together with values of YT,, , r2T,o , r(J,), and r(J&. at (4, J - 2,4), enables the 
fluxes T,, , T,O , (Jhb , and (Jj>+. to be calculated at (4, J, 4). If J is unity or even, 
the values of the right hand sides are stored and no integration is performed until 
the next odd J value is reached. 

(vi) If J is odd and output is required here, calculation and output are made 
of the fluxes, exchange coefficients, Prandtl, Schmidt and r&viscosity numbers and 
mixing length parameter. 

Repetition of this process for higher values of J allows cross-stream results at 
some axial station to be deduced If experimental mean measurements ofp and/or v, 
are available, step (ii) and/or (iii) may be omitted. Boundary conditions are 
required for the integration stages; these are 

P =Pm at r=co, (26) 

Vr = Trz = Tre = (J& = (J& = 0 at r = 0. (27) 

Repetition of the procedure at other axial stations z and other swirl numbers S 
enables full spatial and swirl distributions to be obtained. 

THE TEXCO COMPUTER PROGRAM 

The program described and listed in [l, 41 is equipped with a simplified com- 
bustion model but modification to more complete models is straightforward. 
Consideration is given to the degenerate case of a simple chemical reaction of the 
form 

1 kg * fuel + i kg . oxidant --f (1 + i) kg . products, (28) 

where combustion is assumed to occur in a single step between just two chemical 
species, fuel and oxidant. Equation (8) now simplifies to 

h = c; T+ Hfzl*mtu, (29) 

and enables the enthalpy equation to be solved for Prandtl numbers if ml, is known. 
Schmidt numbers are obtained from Eq. (4) withj = fu. Thus specification of the 
distribution of but one chemical species’ concentration, fuel, enables the full 
generality of the method to be outlined. 
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The TEXCO program has been written (in Fortran IV) primarily with a view to 
maximizing ease of use and accuracy, perhaps at the expense of computer time. 
Full details of the organization of the computer program, together with the general 
listing, are available in [l, 41. 

Ease of use is achieved by limiting to the MAIN subprogram those features 
which characterize the particular flow configuration being solved. Accuracy is 
enhanced by having in-built into the general subroutine CALC (which performs 
the series of calculations (i)-(vi) above, storage and output) seven-point central 
difference differentiation formulas [Eq. (22)] and three-point Simpson’s rule 
integration formulas [Eq. (24)]. These possess local accuracy of order hs and h5, 
respectively. The CALC routine is quite general in comparison to MAIN. 

The one remaining subroutine PLOT is used only when quick scenic output is 
required in the form of lineprinter graph plots. Modifications only with regard to 
scaling may be necessary, but further storage and different types of print could 
easily be incorporated so as to provide very detailed plots. 

Generally a user’s attention is restricted to MAIN and its breakdown into 
chapters simplifies his task. MAIN differs for each flow configuration and reliable 
distributions must be used and entered correctly. If several chemical species’ 
concentrations have been measured further equations of type (4) and reaction 
rates (9) must be included. 

With regard to accuracy and economy, decisions on the size of mesh and checks 
on the variation 6; .~sults at a particular spatial position may be made by their 
independent variation. Generally, with the high accuracy seven-point central 
difference derivative formula, the calculations are almost independent of the size 
of grid in the z-direction if “smooth” experimentally fitted data curves are used; 
however, the cross-stream integrations are somewhat dependent on the number of 
points across the layer as expected. A value of about 150 points across a particular 
mixing region has been found to be quite adequate. A three-, five-, or seven-point 
differentiation formula may be used and the grid-size and variable dimensions 
may be cut down accordingly. 

APPLICATION OF THE METHOD 

Results are presented and discussed of the application of the TEXCO code to 
some of the very limited experimental data on turbulent swirling flows: the 
isothermal swirling jet and the swirling flame. The values of all quantities calculated 
here are directly dependent upon the accuracy of the experiments, the curve fitting 
and the calculation procedure. Accuracy checks were made with the calculation 
procedure by varying the size of grid and number of points NPT across the 
mixing layer. Since the calculation is a Simpson integration across the mixing layer, 
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with ordinate values calculated each time from the experimental curves, decreasing 
the size of the grid and increasing NPT can increase almost without limit the 
accuracy of the calculation. It is considered that mesh parameters making the 
calculation procedure extremely accurate have been used and that sufficient care 
has been taken in the other procedures for all the conclusions to be valid and the 
magnitude of calculated terms to have an accuracy of ten per cent. 

The Isothermal Swirling Jet 

The results presented and discussed refer to predictions made from experimental 
mean data of Chigier and Chervinsky [7], who conducted an experimental study of 
isothermal turbulent jets with degrees of swirl S from 0.0 to 0.6. 

In [7] curves were fitted through the experimental points of time-mean velocities 
and pressure and a set of equations with empirical constants were given so that 
their variations with position and degree of swirl were readily calculable. 

Since the study concerned itself with isothermal mixing of a jet of the same fluid 
as the surroundings, the enthalpy and species equations [Eqs. (3) and (4)] could be 
dispensed with and the program operated with only two different equations, for 
rVZ and T,@ . Results show [2,4], that T,, and prZ are, in general, of larger magnitude 
than rro and I-G , T,, and pLpZ both increasing with swirl in the initial region near 
the orifice but decreasing with swirl in the fully developed region. The r&viscosity 
number (s,@ is generally greater than unity and progressively so as the degree of 
swirl increases, the deviation from unity being more pronounced in the initial 
region. 

Mixing length parameters calculated according to Eq. (15) and similar for hrs 
are shown in Fig. 3 for the initial and fully developed regions. There was little 
downstream variation after the first five diameters. For nonswirling jets it has been 
found that good predictions of mean velocity distributions can be made with the 
assumption that X,, is constant and equal to 0.0845; see [8]. An examination of 
Fig, 3 shows that there is a variation of both X,, and h,, with spatial position and 
degree of swirl. The spatial variations of X,, are seen to be greater for swirling 
than for nonswirling jets, but spatial variations of XT0 are very small. The increase 
in X,, towards the center shows that predictions using a constant mixing length 
predict too low an effective viscosity prZ , and hence a distribution of u/u, which 
is too pointed near t = 0. On the basis of the results shown in Fig. 3 it may be 
concluded that good predictions can be made for weakly swirling jets with the 
assumption that X,, and h,, are both equal to 0.1, whereas for higher degrees of 
swirl a smaller value of X,, is appropriate. Thus, despite the effective viscosity 
being nonisotropic and nonuniform, a mixing length parameter distribution which 
is isotropic and uniform is quite feasible for weakly swirling jets, but is progressively 
less valid as the degree of swirl increases. 
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FIG. 3. Radial distributions of mixing length parameters A, and X, in the initial and fully 
developed regions in isothermal regions. 
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The Swirling Flame 

This section deals with the case of free swirling jet flames with combustion of 
fuel gas. The calculation procedure is extended to calculate turbulent viscosity, 
Prandtl and Schmidt numbers from experimental mean data of velocity, temperature 
and concentration in turbulent flames, for a limited range of degrees of swirl. 

Owing to the lack of experimental results reported of spatial distributions of 
mean values, the method in its full generality cannot yet be used. Up to now there 
appears to be no reported results on concentration measurements in turbulent 
swirling flames and thus it would be disproportionate to solve equations of type (4) 
for Schmidt numbers. But Prandtl numbers may still be obtanied via a simplified 
model. 

The degenerate case of a simple chemical reaction, as previously described, is 
considered and the enthalpy equation can be solved for Prandtl numbers if m,, is 
known. On the basis of concentration measurements of Hawthorne [9] and the 
velocity measurements of Chigier [lo] it has been assumed that the Schmidt 
number for the fuel concentration within the flame boundary is the same as for an 
isothermal jet, i.e., 0.7. Extending this to the case of a swirling flame yields the 
result that, within the flame, concentration distribution can be obtained from the 
measured mean velocities of each flame, which differ according to the degree of 
swirl. To complete the fuel distribution, zero concentration is assumed outside the 
flame boundary, which is taken to be the radial position of maximum temperature 
at a given axial station. 

The results presented and discussion refer to predictions made from experimental 
time-mean data of Chigier and Chervinsky [lo] who conducted an experimental 
study of turbulent swirling flames with degrees of swirl S from 0.0 to 0.2. The 
flames were premixed (about 20 % fuel) and variations of specific heat and density 
because of composition were ignored in the calculations; data appropriate to air 
were used for c, and p. 

The distributions of the rz- and r&components of T and p are found to be very 
similar to the isothermal case. The nonisotropy was even more marked and all 
components decrease progressively with swirl at this downstream position; the 
experimental results did not extend to the initial region. 

Figures 4 and 5 show distributions of turbulent Prandtl and r&viscosity numbers 
in flames. In general, the Prandtl number increases with swirl, radial and axial 
increases, except for the region near the axis where in any case gradients are small. 
These variations are not in agreement with the accepted constant value near 0.7. 
A lack of experimental measurements of the swirl velocity radial distribution 
necessitated the use of an approximate v,-distribution and hence only qualitative 
values of pTe and uVO could be calculated. In particular, their values were indeter- 
minate in the near zero r&strain of the almost solid body rotation in the central 
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FIG. 5. Distribution of r&viscosity number in flames. 
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FIG. 6. Distribution of mixing length parameter A,, in flames. 

core region. Values of u,.@ in the outer region are shown; they were found to be quite 
large whereas in the isothermal case they were of order unity. The explanation could 
be the limited data or the influence of the discontinuities at the flame boundary. 

Mixing length parameters h,, and h,, have been calculated using Eq. (15) and 
the distribution of X,, is shown in Fig. 6. The rz-value may be compared with the 
accepted nonreacting nonswirling value of between 0.075 and 0.09; the r&values 
are not shown since these were consistently small (about 0.02) and are not useful 
since r&viscosity number distributions have been given. It can be seen that X,., 
varies little with swirl or axial position; indeed the only variation of interest was 
that with t. Even then the higher values near the axis contribute little, since 
gradients are small here. The downstream variation shown of A,, calculated at 
f = 0.025 may be considered as a recommended value for calculations within the 
flame. Thus an almost spatially constant value of X,, of 0.065 was found. However, 
there was a slight downward trend with swirl. 

CONCLUSION 

A method is presented2 which allows the distributions of the significant flux 
components [Tag , 710 , (J& and (JJ,.] and associated exchange coefficients, Prandtl 
and Schmidt numbers to be determined from experimental time-mean distributions 

2 Complete numerical, computational, and program details are available in [l, 41. 
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of vz 3 ve 9 T and mj . It thus provides a link between mean measurements and 
certain correlations of turbulent fluctuation components and throws light on the 
appropriateness or otherwise of any given turbulence model for the flow under 
consideration. The method is applied to both isothermal and chemically reacting 
flows, and calculations show that previous isotropy and constant Prandtl-Schmidt 
number assumptions are not generally valid and that the turbulent stress distri- 
bution is nonisotropic. The exchange coefficients are shown to be functions of the 
degree of swirl and position in the flowfield. For the isothermal case it is shown that 
the assumption of an isotropic uniform mixing length parameter distribution is 
quite feasible for weak swirl but is progressively less valid as the degree of swirl 
increases. For the flame case, similar results are obtained and the turbulent viscosity 
is found to be highly nonisotropic. 
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